Ключевое слово: «кривые второго порядка»
Кирин Н. А. Реализация принципа преемственности и использование интегративного подхода на примере изучения вопросов ортогональности семейств кривых второго порядка в рамках дисциплины «Дифференциальные уравнения» // Научно-методический электронный журнал «Концепт». – 2019. – № 2 (февраль). – С. 13–23. – URL: http://e-koncept.ru/2019/191009.htm
ART 191009
DOI 10.24411/2304-120X-2019-11009
Просмотров: 1514
Актуальность данной работы определяется необходимостью реализации принципа преемственности в образовании не только в рамках перехода школа – вуз, но и в рамках изучения отдельных математических дисциплин. Это обеспечивает установление прочных межпредметных связей и является одной из важнейших составляющих в формировании компетенций будущего выпускника вуза, так как это максимально способствует широкому применению полученных знаний в самых разных областях. Эта проблема рассмотрена на примере изучения вопросов ортогональности кривых второго порядка в рамках дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными». С темой «Кривые второго порядка» учащиеся знакомятся начиная с 7-го класса, при этом к ней непрестанно возвращаются на протяжении всего школьного курса математики, а в рамках вузовской программы расширяют свои знания о свойствах этих кривых и изучают их канонические уравнения. При этом целостная картина у учащихся начинает складываться лишь при изучении дифференциальной геометрии и применении математического анализа для решения ряда задач, связанных с нахождением касательных и нормалей к линиям на плоскости, а также с нахождением расстояния от точки до кривой. Целью данной статьи является раскрытие возможностей дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными» для обобщения знаний учащихся по теме «Кривые второго порядка» на примере понятия «ортогональность плоских кривых». Главным аргументом является то, что в рамках данной дисциплины можно объединить и геометрический, и функциональный подходы, а также использовать инструменты математического анализа. В статье даются рекомендации в рамках методики преподавания данной дисциплины по достижению указанных целей, а именно: приведена серия задач по теме «Ортогональные траектории», позволяющая ещё раз вернуться к кривым второго порядка, систематизировать и расширить ранее имеющиеся у учащихся знания. При этом решение этих задач дает возможность отработать необходимые навыки в рамках самой дисциплины на доступном материале, который позволит легко проиллюстрировать полученные результаты и показать их непротиворечивость ранее известным фактам из школьного и вузовского курса математики. Одним из ведущих подходов к исследованию данной проблемы является интегративный подход, который помогает обеспечить целостность и преемственность содержания образовательной программы при переходе от школьной математики к высшей. Также он помогает установить прочные межпредметные связи между разными разделами высшей математики. В статье изучаются возможности дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными» для установления межпредметных связей внутри математических дисциплин, таких как геометрия, аналитическая геометрия, дифференциальная геометрия и математический анализ, на примере темы «Кривые второго порядка». Практическая значимость статьи заключается в том, что приведен ориентировочный список практических заданий с решениями, который может быть использован в процессе преподавания данной дисциплины для достижения указанных выше целей.