Полный текст статьи
Печать
Аннотация. Актуальность исследования объясняется важностью получения качест­венных прогнозов основных финансовых индикаторов в условиях современных тенденций, а также успешным опытом применения нейронных сетей в зада­чах прогнозирования, что может быть осуществлено верным выбором языка программирования. Это актуализирует цель данной статьи – проведение сравнительного анализа языков программирования. 
Ключевые слова: язык программирования, среда программирования, инструментальные средства.

Существующие языки программирования предназначены для решения ориентированного достаточно узкого круга задач. Язык не может быть панацеей, его хорошие качества для одних задач (или людей) могут оказаться плохими для других.

Следует отличать язык программирования (Basic, Pascal) от его реализации, которая обычно представлена в составе среды программирования (Quick Basic, Virtual Pascal) − набора средств для редактирования исходных текстов, генерации исполняемого кода, отладки, управления проектами и т.д. Синтаксис и семантика языка программирования фиксируется в стандарте языка. Каждая среда программирования предоставляет свой интерпретатор или компилятор с этого языка, который зачастую допускает использование конструкций, не фиксированных в стандарте.

Существенна цель, для реализации которой выбирается язык – либо для обучения программированию, либо для решения конкретной прикладной задачи. В первом случае язык должен быть простым для понимания, строгим и по возможности лишенным "подводных камней". Во втором − пусть сложным, но эффективным и выразительным инструментом для профессионала.

Конечно, на практике обучение не может быть отделимо от реальных задач. Так называемые учебные задачи чаще всего страдают излишней абстрактностью и неприменимостью в жизни. Освоение языка (или среды программирования) само по себе не может считаться задачей, точнее − это очень непродуктивный подход. Эффективное освоение языка возможно только на реальных примерах. С другой стороны, программирование решения полноценной проблемы «из жизни» на начальном этапе освоения языка оказывается непосильной ношей, которая может отпугнуть, а не заинтересовать.

При решении конкретной прикладной задачи в большинстве случаев язык и среда программирования не выбираются, а задаются извне − заказчиком, руководителем и т.п. В том же редком случае, когда возможен выбор, исходить, на мой взгляд, следует из следующих условий (в порядке приоритета):

а) характера самой задачи и технических требований;

б) наработанного инструментария и имеющихся для данной среды библиотек;

в) имеющихся в языке и среде программирования инструментальных средств.

Зачастую при подобном выборе поступают строго наоборот: сначала решают, что программировать будут на объектах, затем − что использоваться будет конкретная библиотека, а потом подгоняют под это технические требования, объясняя все это тем, что заказчик «не знает чего хочет».

Применимость языка для той или иной задачи зависит от того, каким набором понятий профессионал оперирует, в рамках каких концепций (парадигм) он позволяет работать, какие имеются стандартные и распространенные пользовательские библиотеки и т.д.

По набору понятий языки подразделяются на высоко− и низкоуровневые. Первые предоставляют высокий уровень абстракции от оборудования, вторые − низкий, приближенный к машинному.

С точки зрения того, внесены ли в набор понятий особые, специфичные для предметной области объекты, языки делятся на универсальные (процедурные) и специализированные. К последним можно отнести Prolog, Lisp. Универсальные языки позволяют реализовать любой алгоритм, пользуясь стандартным набором конструкций. Благодаря этому, код на таком языке может быть достаточно легко перенесен из одного процедурного языка в другой при помощи консервативных изменений.

Приведем основные концепции, внесенные в те или иные общеупотребительные языки и связанные с ними понятия: типизации и структуры данных. Любой язык характеризуется набором базовых типов, возможностями по пополнению этого набора при помощи ряда конструкторов: массив, запись (структура), объединение. В некоторых языках имеется универсальный тип (Variant в Delphi и Visual Basic), свободно используемый как любой из базовых типов. Степень контроля типов может быть очень разной − от полного отсутствия до крайне жесткого. Важно наличие (возможно, в виде библиотеки) структур данных переменной длины, например, динамических массивов.

Различия в языках сводятся к способам определения процедур и функций, вариантам передачи параметров, возможностям определения рекурсивных процедур и наличию процедурного типа данных.

Наличие и широкая классификация типов памяти дает возможность эффективно управлять ее распределением, но и вносит сложность, требующую от программиста более внимательного отношения. Обычно выделяют (максимальный спектр): регистры, глобальные, локальные и динамические переменные.

Наличие средств логического объединения группы процедур, функций, переменных позволяет работать с большими проектами, упрощая их структуру. Важное свойство − возможность описания процедур инициации и завершения модуля.

Объединение структур и методов их обработки (инкапсуляция) создает значительные удобства при программировании. Возможность наследования позволяет привести в систему набор структур. Автоматически вызываемые конструкторы и деструкторы упрощают отслеживание взаимосвязей. Все это составляет удобный инструмент для описания понятий и действий прикладной программы.

Независимость от аппаратуры, реализуемая при помощи семантики, не зависящей от конкретной машины и внесением в язык ряда специфичных понятий – таких, как базовый тип с нефиксированным размером (int в C) [1].

С точки зрения эффективности, важно как исполняется программа − последовательной интерпретацией исходного текста (интерпретатор) либо непосредственным исполнением готового кода (компилятор). Интерпретатор целесообразно использовать лишь в случае, когда скорость интерпретации не сильно сказывается на эффективности программы. Кроме интерпретации и компиляции возможны промежуточные варианты с генерацией псевдокода, который отличается от от исходного текста высокой скоростью интерпретации либо другими полезными свойствами (например, возможностью исполнения на машинах различной архитектуры − как Java).

Рассмотрим популярные языки и программные среды с точки зрения приспособленности под различные классы задач.

Рожденный в 60 −е годы в Америке, Бейсик был задуман как простой язык для быстрого освоения. Бейсик стал фактическим стандартом для МикроЭВМ именно благодаря своей простоте как в освоении так и в реализации. Однако для достижения этого качества был принят ряд решений (отсутствие типизации, нумерация строк и неструктурное GOTO, и др.), негативно сказывающихся на стиле изучающих программирование. Кроме того, недостаток выразительных средств привел к появлению огромного количества диалектов языка, не совместимых между собой. Современные, специализированные версии Бейсика (такие как Visual Basic) несмотря на приобретенную "структурность" обладают все теми же недостатками, прежде всего − небрежностью по отношению к типам и описаниям. Пригоден для использования на начальном этапе обучения, как средство автоматизации (в случаях когда он встроен в соответствующие системы) либо как средство для быстрого создания приложений.[2]

Разработанный известным теоретиком Н.Виртом на основе идей Алгола −68, Паскаль предназначался прежде всего для обучения программированию. Построенный по принципу "необходимо и достаточно", он располагает строгим контролем типов, конструкциями для описания произвольных структур данных, небольшим, но достаточным набором операторов структурного программирования. К сожалению, обратной стороной простоты и строгости является громоздкость описаний конструкций языка. Наиболее известная реализация − Turbo/Borland Pascal − несмотря на отличия от стандарта Паскаля, представляет из себя среду и набор библиотек, сделавшие из учебного языка промышленную систему для разработки программ в среде MS −DOS.[3]

Ярчайший представитель языков низкого уровня Assembler, набор понятий которого основан на аппаратной реализации. Это средство автоматизации для программирования непосредственно в кодах процессора. Машинные команды описываются в виде мнемонических операций, что позволяет добиться достаточно высокой модифицируемости кода. Поскольку набор команд на разных процессорах различен, то и о совместимости говорить не приходится. Использование ассемблера целесообразно в случаях, когда необходимо напрямую взаимодействовать с оборудованием, либо получить большую эффективность для некоторой части программы за счет более высокого контроля над генерацией кода.[4]

После продолжительной борьбы на фронте программных сред для Windows, Borland  ушла на рынок корпоративных систем. Delphi − это не продолжатель дела Borland Pascal / Borland C, его ниша − т.н. быстрое создание приложений (Rapid Application Developing, RAD). Подобные средства позволяют в кратчайшие сроки создать рабочую программу из готовых компонентов, не растрачивая массу усилий на мелочи. Особое место в таких системах занимают возможности работы с базами данных.[5]

Как яркий пример специализации, язык Java появился в ответ на потребность в идеально переносимом языке, программы на котором эффективно исполняются на стороне клиента WWW. В ввиду специфики окружения, Java может быть хорошим выбором для системы, построенной на Internet/Intranet технологии.[6]

В основе языка C − требования системного программиста: полный и эффективный доступ ко всем ресурсам компьютера, средства программирования высокого уровня, переносимость программ между различными платформами и операционными системами. С++, сохраняя совместимость с C, вносит возможности объектно−ориентированного программирования, выражая идею класса (объекта) как определяемого пользователем типа. Благодаря перечисленным качествам, C/C++ занял позицию универсального языка для любых задач. Но его применение может стать неэффективным там, где требуется получить готовый к употреблению результат в кратчайшие сроки, либо там, где невыгодным становится сам процедурный подход.[7]

Для реализации проекта построения нейросетевой модели для прогнозирования временных рядов финансовых данных на базе многослой­ного персептрона, обученного по алгоритму обратного распространения ошибки (а также формализации полной схемы применения данной модели для анализа и прогнозирования временных рядов на примере котировок ак­ций российских эмитентов на ММВБ) выбрана среда разработки С++ Builder 2010, так как она сочетает в себе функциональность и хорошую скорость работы программ сделанных на С++, а также позволяют в кратчайшие сроки создать рабочую программу из готовых компонентов, не растрачивая массу усилий на мелочи.

Меняется аппаратура и операционные системы. Возникают новые задачи из самых различных предметных областей. Уходят в прошлое и появляются новые языки. Но остаются люди − те, кто пишет и те, для кого пишут новые программы и чьи требования к качеству остаются теми же вне зависимости от этих изменений.

 

ССЫЛКИ НА ИСТОЧНИКИ

  1. Джаррод Холингворт, Боб Сворт, Марк Кэшмэн, Поль Густавсон Borland C++ Builder 6. Руководство разработчика = Borland C++ Builder 6 Developer’s Guide. — М.: «Вильямс», 2004. — С. 976.
  2. Вик Курилович Visual Basic. − Издательство «Солон-Пресс», 2006 г., −С. 384.
  3. Андреева Т. А. Программирование на языке Pascal. − Издательство: Интернет-университет информационных технологий, Бином. Лаборатория знаний, 2006 г. − С. 240.
  4. Пильщиков В. Н. Assembler. Программирование на языке ассемблера IBM. − PCИздательство: Диалог-МИФИ, 2005 г. − С. 288.
  5. Желонкин А. Основы программирования в интегрированной среде DELPHI. − Издательство: Бином. Лаборатория знаний, 2004 г. − С. 240.
  6. Джошуа Блох Java. Эффективное программирование Effective Java. Programming Language Guide − Серия: Java Издательство: Лори, 2002 г. − С. 224.
  7. Лафоре Р. Объектно-ориентированное программирование в С++ Object-Oriented Programming in C++ − Издательство: Питер, 2011 г.