Ключевое слово: «geometry»

Яшина М. Л., Локтина Р. В. Применение компьютерных программных средств в преподавании математики // Научно-методический электронный журнал «Концепт». – 2012. – №7 (Июль). – С. 66–70. – URL: http://e-koncept.ru/2012/12094.htm
Полный текст статьи Читать онлайн Статья в РИНЦ
В статье обосновывается роль математики в системе общего образования и раскрываются целесообразность и возможности применения компьютерной программы «Живая геометрия» на уроках геометрии в школе.
Бушмелева Н. А. Интеграция геометрии, программирования и информационных технологий при изучении геометрических сплайнов // Научно-методический электронный журнал «Концепт». – 2012. – №8 (Август). – С. 71–75. – URL: http://e-koncept.ru/2012/12111.htm
Полный текст статьи Читать онлайн Статья в РИНЦ
Статья посвящена вопросу интеграции учебных дисциплин в практике вузовского преподавания. Ее целью является демонстрация возможностей использования различных информационных технологий при изучении классической дисциплины.
Журавлева С. С., Крутихина М. В. Обучение решению задач на построение сечений многогранников // Научно-методический электронный журнал «Концепт». – 2016. – № 9 (сентябрь). – С. 54–62. – URL: http://e-koncept.ru/2016/16185.htm
Полный текст статьи Читать онлайн Статья в РИНЦ
Статья посвящена вопросам обучения учащихся решению задач на построение сечений многогранников. Авторы предлагают ряд упражнений на развитие пространственного мышления, которые могут быть использованы на уроках математики в средней школе, а также пропедевтическую работу по построению сечений многогранников для учащихся старших классов.
Чернов Р. В., Бауер Ю. Л. Использование урока решения одной задачи на геометрии // Научно-методический электронный журнал «Концепт». – 2018. – № V8. – С. 71–76. – URL: http://e-koncept.ru/2018/186078.htm
Полный текст статьи Читать онлайн Статья в РИНЦ
В статье рассматривается возможность проведения урока одной задачи при преподавании геометрии. Авторы раскрывают плюсы такого урока (систематизация и обобщение знаний и др.), а также приводят пример задачи, которая может быть использована на уроке геометрии, и разбирают ее возможные решения. Статья может быть использована учителями математики, геометрии, физики, так как на основе приведенных различных решений могут быть также решены и другие задачи из разных областей знаний.
Кирин Н. А. Реализация принципа преемственности и использование интегративного подхода на примере изучения вопросов ортогональности семейств кривых второго порядка в рамках дисциплины «Дифференциальные уравнения» // Научно-методический электронный журнал «Концепт». – 2019. – № 2 (февраль). – С. 13–23. – URL: http://e-koncept.ru/2019/191009.htm
Полный текст статьи Читать онлайн
Актуальность данной работы определяется необходимостью реализации принципа преемственности в образовании не только в рамках перехода школа – вуз, но и в рамках изучения отдельных математических дисциплин. Это обеспечивает установление прочных межпредметных связей и является одной из важнейших составляющих в формировании компетенций будущего выпускника вуза, так как это максимально способствует широкому применению полученных знаний в самых разных областях. Эта проблема рассмотрена на примере изучения вопросов ортогональности кривых второго порядка в рамках дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными». С темой «Кривые второго порядка» учащиеся знакомятся начиная с 7-го класса, при этом к ней непрестанно возвращаются на протяжении всего школьного курса математики, а в рамках вузовской программы расширяют свои знания о свойствах этих кривых и изучают их канонические уравнения. При этом целостная картина у учащихся начинает складываться лишь при изучении дифференциальной геометрии и применении математического анализа для решения ряда задач, связанных с нахождением касательных и нормалей к линиям на плоскости, а также с нахождением расстояния от точки до кривой. Целью данной статьи является раскрытие возможностей дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными» для обобщения знаний учащихся по теме «Кривые второго порядка» на примере понятия «ортогональность плоских кривых». Главным аргументом является то, что в рамках данной дисциплины можно объединить и геометрический, и функциональный подходы, а также использовать инструменты математического анализа. В статье даются рекомендации в рамках методики преподавания данной дисциплины по достижению указанных целей, а именно: приведена серия задач по теме «Ортогональные траектории», позволяющая ещё раз вернуться к кривым второго порядка, систематизировать и расширить ранее имеющиеся у учащихся знания. При этом решение этих задач дает возможность отработать необходимые навыки в рамках самой дисциплины на доступном материале, который позволит легко проиллюстрировать полученные результаты и показать их непротиворечивость ранее известным фактам из школьного и вузовского курса математики. Одним из ведущих подходов к исследованию данной проблемы является интегративный подход, который помогает обеспечить целостность и преемственность содержания образовательной программы при переходе от школьной математики к высшей. Также он помогает установить прочные межпредметные связи между разными разделами высшей математики. В статье изучаются возможности дисциплины «Обыкновенные дифференциальные уравнения и уравнения с частными производными» для установления межпредметных связей внутри математических дисциплин, таких как геометрия, аналитическая геометрия, дифференциальная геометрия и математический анализ, на примере темы «Кривые второго порядка». Практическая значимость статьи заключается в том, что приведен ориентировочный список практических заданий с решениями, который может быть использован в процессе преподавания данной дисциплины для достижения указанных выше целей.