Орлик Любовь Константиновна
Статьи автора
Крамер Я. С., Орлик Л. К. Экспоненциальная характеристика двучленного уравнения второго порядка со стационарным оператором // Научно-методический электронный журнал «Концепт». – 2017. – Т. 39. – С. 1921–1925. – URL: http://e-koncept.ru/2017/970711.htm
ART 970711
Просмотров: 955
Получена оценка роста решений линейного дифференциального уравнения в частных производных со старшим членом. Установлен вид экспоненциальной характеристики двучленного уравнения второго порядка со стационарным оператором. Метод основан на исследовании решений операторных уравнений специального вида, изучении спектра операторного коэффициента.
Крамер Я. С., Орлик Л. К. О расширении понятия устойчивости по Ляпунову // Научно-методический электронный журнал «Концепт». – 2017. – Т. 39. – С. 1871–1875. – URL: http://e-koncept.ru/2017/970701.htm
ART 970701
Просмотров: 1075
Изложены основные этапы развития и расширения понятия устойчивости по Ляпунову в банаховом пространстве: от классического понимания до построения экспоненциальной характеристики уравнения.
Александров П. О., Орлик Л. К. Оригинальное применение математического ожидания к вычислению вероятностей: модельная задача, программная реализация, особенности алгоритма // Научно-методический электронный журнал «Концепт». – 2016. – Т. 15. – С. 2166–2170. – URL: http://e-koncept.ru/2016/96353.htm
ART 96353
Просмотров: 1219
В статье изложено оригинальное решение вероятностной задачи на классическую схему без использования комбинаторных формул, основанное на применении математического ожидания. Представлены нестандартные вычислительные алгоритмы с программной реализацией, и получены оценки их скорости роста. Проанализированы факторы, ускоряющие процесс вычислений.
Михалев А. А., Орлик Л. К. Степенная функция как МНК-аппроксимация модели электромагнитного импульса // Научно-методический электронный журнал «Концепт». – 2016. – Т. 11. – С. 1411–1415. – URL: http://e-koncept.ru/2016/86302.htm
ART 86302
Просмотров: 3817
В данной статье рассмотрено приложение метода наименьших квадратов и аппроксимации (формула) в диапазоне расстояний от R1 до R2 в рамках модельной задачи о поле светового излучения ядерного взрыва. Для нахождения параметров модели и зависимости аппроксимирующей функции от заданных параметров используются инструменты математического пакета Maple.