Ахметова Фания Харисовна

Город: Москва
Степень: кандидат физико-математических наук
Место работы: ФГБОУ ВО «Московский государственный технический университет им. Н. Э. Баумана»
Должность: доцент
0 Публикаций в РИНЦ
0 Индекс Хирша
0 Индекс PAPAI
10 Публикаций в журнале

Статьи автора

Ахметова Ф. Х., Головина А. М. Методика построения графиков линейных функций, содержащих знак модуля // Научно-методический электронный журнал «Концепт». – 2017. – № 5 (май). – URL: http://e-koncept.ru/2017/170117.htm.
Публикация находится в обработке. Полный текст будет доступен в ближайшее время.
Ахметова Ф. Х., Ласковая Т. А., Попова Е. М. Методика изложения темы «Функции случайных величин» // Научно-методический электронный журнал «Концепт». – 2017. – № 4 (апрель). – С. 118–127. – URL: http://e-koncept.ru/2017/170090.htm.
Полный текст статьи Читать онлайн
В работе предлагается методика изложения темы «Функции случайных величин» в курсе «Теория вероятностей». Статья написана на основе многолетнего опыта преподавания этого предмета и будет полезна как студентам, так и преподавателям при проведении практических занятий. В ней отсутствуют доказательства используемых теорем, однако приведен список литературы, к которому можно обратиться за более подробными разъяснениями. Рассмотрено большое количество примеров, которые позволят студентам усвоить изучаемый материал в необходимом объеме. Цель работы – помочь студентам приобрести навыки применения вероятностных методов к решению различных задач.
Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Формула полной вероятности и формула Байеса» // Научно-методический электронный журнал «Концепт». – 2017. – № 3 (март). – С. 142–150. – URL: http://e-koncept.ru/2017/170069.htm.
Полный текст статьи Читать онлайн
В статье предложена методика изложения темы «Формула полной вероятности и формула Байеса», основанная на личном опыте авторов преподавания дисциплины «Теория вероятностей». При решении задач по данной теме наибольшую трудность у студентов вызывает вычисление условных вероятностей. В связи с этим в работе уделено особое внимание методике решения задач. Приведены основные теоретические сведения и большое количество типовых примеров, показывающих приемы решения, которые позволят студентам приобрести необходимые навыки в освоении данной темы.
Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Применение операционного исчисления к решению задачи Коши» // Научно-методический электронный журнал «Концепт». – 2017. – № 2 (февраль). – С. 154–164. – URL: http://e-koncept.ru/2017/170047.htm.
Полный текст статьи Читать онлайн
В работе рассмотрены краткие теоретические сведения, связанные с применением операционного исчисления. Оригиналы и изображения, основные теоремы и типовые примеры нахождения изображения для данного оригинала сведены в таблицы. Описаны способы восстановления оригинала по известному изображению. Поскольку классические методы решения задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами и правой частью в виде составной функции являются в значительной степени трудоемкими, наглядно показана эффективность применения операционного исчисления и методы решения таких задач. Разобрано решение задачи Коши по формуле Дюамеля.
Ахметова Ф. Х., Акимова И. Я., Чигирёва О. Ю. Методика приведения уравнений кривых и поверхностей второго порядка к каноническому виду с применением среды MathCAD // Научно-методический электронный журнал «Концепт». – 2016. – № 11 (ноябрь). – С. 151–161. – URL: http://e-koncept.ru/2016/16250.htm.
Полный текст статьи Читать онлайн
В работе рассмотрена методика приведения уравнений кривых и поверхностей второго порядка к каноническому виду. На примерах проиллюстрированы этапы практического вычисления ортогонального преобразования, приводящего квадратичную форму к каноническому виду. Показана перспектива использования пакета прикладных программ в учебном процессе, а именно среды MathCAD. С помощью этого инструмента в примерах продемонстрирована процедура нахождения собственных значений и собственных векторов. Их нахождение, как правило, трудоемко, поэтому для быстроты подсчета целесообразно использование программы MathCAD. Статья будет полезна студентам и преподавателям при проведении семинарских занятий по дисциплине «Линейная алгебра».