Ахметова Фания Харисовна
Статьи автора
Ахметова Ф. Х., Ласковая Т. А., Попова Е. М. Методика изложения темы «Функции случайных величин» // Научно-методический электронный журнал «Концепт». – 2017. – № 4 (апрель). – С. 118–127. – URL: http://e-koncept.ru/2017/170090.htm
ART 170090
DOI 10.24422/MCITO.2017.4.5797
Просмотров: 2893
В работе предлагается методика изложения темы «Функции случайных величин» в курсе «Теория вероятностей». Статья написана на основе многолетнего опыта преподавания этого предмета и будет полезна как студентам, так и преподавателям при проведении практических занятий. В ней отсутствуют доказательства используемых теорем, однако приведен список литературы, к которому можно обратиться за более подробными разъяснениями. Рассмотрено большое количество примеров, которые позволят студентам усвоить изучаемый материал в необходимом объеме. Цель работы – помочь студентам приобрести навыки применения вероятностных методов к решению различных задач.
Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Формула полной вероятности и формула Байеса» // Научно-методический электронный журнал «Концепт». – 2017. – № 3 (март). – С. 142–150. – URL: http://e-koncept.ru/2017/170069.htm
ART 170069
DOI 10.24422/MCITO.2017.3.5646
Просмотров: 2334
В статье предложена методика изложения темы «Формула полной вероятности и формула Байеса», основанная на личном опыте авторов преподавания дисциплины «Теория вероятностей». При решении задач по данной теме наибольшую трудность у студентов вызывает вычисление условных вероятностей. В связи с этим в работе уделено особое внимание методике решения задач. Приведены основные теоретические сведения и большое количество типовых примеров, показывающих приемы решения, которые позволят студентам приобрести необходимые навыки в освоении данной темы.
Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Применение операционного исчисления к решению задачи Коши» // Научно-методический электронный журнал «Концепт». – 2017. – № 2 (февраль). – С. 154–164. – URL: http://e-koncept.ru/2017/170047.htm
ART 170047
Просмотров: 2405
В работе рассмотрены краткие теоретические сведения, связанные с применением операционного исчисления. Оригиналы и изображения, основные теоремы и типовые примеры нахождения изображения для данного оригинала сведены в таблицы. Описаны способы восстановления оригинала по известному изображению. Поскольку классические методы решения задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами и правой частью в виде составной функции являются в значительной степени трудоемкими, наглядно показана эффективность применения операционного исчисления и методы решения таких задач. Разобрано решение задачи Коши по формуле Дюамеля.
Ахметова Ф. Х., Акимова И. Я., Чигирёва О. Ю. Методика приведения уравнений кривых и поверхностей второго порядка к каноническому виду с применением среды MathCAD // Научно-методический электронный журнал «Концепт». – 2016. – № 11 (ноябрь). – С. 151–161. – URL: http://e-koncept.ru/2016/16250.htm
ART 16250
Просмотров: 4420
В работе рассмотрена методика приведения уравнений кривых и поверхностей второго порядка к каноническому виду. На примерах проиллюстрированы этапы практического вычисления ортогонального преобразования, приводящего квадратичную форму к каноническому виду. Показана перспектива использования пакета прикладных программ в учебном процессе, а именно среды MathCAD. С помощью этого инструмента в примерах продемонстрирована процедура нахождения собственных значений и собственных векторов. Их нахождение, как правило, трудоемко, поэтому для быстроты подсчета целесообразно использование программы MathCAD. Статья будет полезна студентам и преподавателям при проведении семинарских занятий по дисциплине «Линейная алгебра».
Международная публикация Методика изложения темы «Преобразование Фурье импульсных функций»
Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Преобразование Фурье импульсных функций» // Научно-методический электронный журнал «Концепт». – 2016. – № 9 (сентябрь). – С. 42–53. – URL: http://e-koncept.ru/2016/16184.htm
ART 16184
Просмотров: 3009
В статье рассмотрено преобразование Фурье импульсных функций, которое составляет математическую основу задач, связанных с теорией приема и преобразования сигналов оптико-электронной системой. Подробно продемонстрирована методика вычисления свертки двух функций, ее образа Фурье, а также образа Фурье – Бесселя осесимметрической функции. Приведена таблица, в которую сведены аналитические выражения для смещенных импульсных функций и записаны их образы Фурье. Разобран широкий спектр примеров решения задач, в каждом из которых приведены графические иллюстрации. Структурированный подход к изложению материала, сочетающий основные теоретические сведения и разбор типовых задач, поможет студентам II курса оптико-электронных специальностей в самостоятельной работе и при выполнении домашних заданий.