Гилев Валерий Георгиевич

Город: Ишим
Степень: кандидат педагогических наук
Место работы: ФГБОУ ВПО «Ишимский государственный педагогический институт им. П.П.Ершова»
Должность: доцент кафедры математики, информатики и методики их преподавания
0 Публикаций в РИНЦ
0 Индекс Хирша
0 Индекс PAPAI
8 Публикаций в журнале

Статьи автора

Гилев В. Г. Построение теории дифференциального исчисления на основе метода обобщения при исследовании функций // Научно-методический электронный журнал «Концепт». – 2018. – . – URL: http://e-koncept.ru/2018/0.htm.
Рассматриваются задачи, приводящие к понятию производной: касательная к кривой и мгновенная скорость изменения функции. На интуитивном уровне вводится понятие предела. Определяется функция обобщения, которая является производной, но определяется без использования теории пределов. Способ, с помощью которого определяется функция обобщения, называется методом обобщения при исследовании функций. Формулируется признак равенства производной функции и функции обобщения. Осуществляется построение теории дифференциального исчисления на основе метода обобщения равносильной той, которая построена на основе теории пределов. Наряду с геометрической и механической интерпретацией вводится алгебраическая интерпретация производной
Гилев В. Г. Методика введения производной на основе метода обобщения // Научно-методический электронный журнал «Концепт». – 2017. – № 4 (апрель). – С. 26–33. – URL: http://e-koncept.ru/2017/170076.htm.
Полный текст статьи Читать онлайн Статья в РИНЦ
Рассматриваются задачи, приводящие к понятию производной: касательная к кривой и мгновенная скорость изменения функции. Вводится функция обобщения, которая является производной, но определяется без использования теории пределов. Способ, с помощью которого определяется функция обобщения, называется методом обобщения.
Гилев В. Г. Второй замечательный предел // Научно-методический электронный журнал «Концепт». – 2017. – Т. 2. – С. 243–246. – URL: http://e-koncept.ru/2017/570050.htm.
Статья в РИНЦ
Рассмотрены доказательства второго замечательного предела: классическое из курса математического анализа и новое, основанное на использовании функции обобщения. Преимуществом нового доказательства является то, что оно не требует сложных математических умозаключений, а опирается на равенство функции обобщения и производной функции, а также понятие эквивалентных величин.
Гилев В. Г. Первый замечательный предел // Научно-методический электронный журнал «Концепт». – 2016. – Т. 17. – С. 384–388. – URL: http://e-koncept.ru/2016/46253.htm.
Статья в РИНЦ
Рассмотрены доказательства на школьном уровне: используются способы сравнения площадей фигур и длин линий на единичной окружности. Вводится понятие эквивалентных бесконечно малых величин. Доказывается первый замечательный предел с использованием производной функции и функции обобщения. Приводятся примеры вычисления производных функций без использования теории пределов.
Гилев В. Г. Методика исследования функций на выпуклость ее графика // Научно-методический электронный журнал «Концепт». – 2016. – № 8 (август). – С. 70–78. – URL: http://e-koncept.ru/2016/16166.htm.
Полный текст статьи Читать онлайн Статья в РИНЦ
Рассмотрены определения понятия выпуклости (вверх, вниз) графика функции с помощью метода касательных, хорд и аналитического метода. Формулируются признаки и соответствующие способы исследования функций на выпуклость графика с использованием второй производной и функции обобщения.