Ключевое слово: «производная функция»
Гилев В. Г. Исследование функций на монотонность // Научно-методический электронный журнал «Концепт». – 2016. – № 7 (июль). – С. 95–104. – URL: http://e-koncept.ru/2016/16146.htm
ART 16146
Просмотров: 3503
Рассмотрены определения понятия монотонности функции с помощью наглядного, словесного, аналитического и геометрического методов. Формулируются признаки и соответствующие способы исследования функций на монотонность с использованием функции обобщения и первой производной.
Гилев В. Г. Методика исследования функций на выпуклость ее графика // Научно-методический электронный журнал «Концепт». – 2016. – № 8 (август). – С. 70–78. – URL: http://e-koncept.ru/2016/16166.htm
ART 16166
Просмотров: 2281
Рассмотрены определения понятия выпуклости (вверх, вниз) графика функции с помощью метода касательных, хорд и аналитического метода. Формулируются признаки и соответствующие способы исследования функций на выпуклость графика с использованием второй производной и функции обобщения.
Ключевые слова:
исследование, функция, выпуклость графика, производная функция, функция обобщения, точки перегиба
Гилев В. Г. Первый замечательный предел // Научно-методический электронный журнал «Концепт». – 2016. – Т. 17. – С. 384–388. – URL: http://e-koncept.ru/2016/46253.htm
ART 46253
Просмотров: 7688
Рассмотрены доказательства на школьном уровне: используются способы сравнения площадей фигур и длин линий на единичной окружности. Вводится понятие эквивалентных бесконечно малых величин. Доказывается первый замечательный предел с использованием производной функции и функции обобщения. Приводятся примеры вычисления производных функций без использования теории пределов.
Гилев В. Г. Второй замечательный предел // Научно-методический электронный журнал «Концепт». – 2017. – Т. 2. – С. 243–246. – URL: http://e-koncept.ru/2017/570050.htm
ART 570050
Просмотров: 6358
Рассмотрены доказательства второго замечательного предела: классическое из курса математического анализа и новое, основанное на использовании функции обобщения. Преимуществом нового доказательства является то, что оно не требует сложных математических умозаключений, а опирается на равенство функции обобщения и производной функции, а также понятие эквивалентных величин.
Гилев В. Г. Построение теории дифференциального исчисления на основе метода обобщения при исследовании функций // Научно-методический электронный журнал «Концепт». – 2018. – . – URL: http://e-koncept.ru/2018/0.htm
Рассматриваются задачи, приводящие к понятию производной: касательная к кривой и мгновенная скорость изменения функции. На интуитивном уровне вводится понятие предела. Определяется функция обобщения, которая является производной, но определяется без использования теории пределов. Способ, с помощью которого определяется функция обобщения, называется методом обобщения при исследовании функций. Формулируется признак равенства производной функции и функции обобщения. Осуществляется построение теории дифференциального исчисления на основе метода обобщения равносильной той, которая построена на основе теории пределов. Наряду с геометрической и механической интерпретацией вводится алгебраическая интерпретация производной.