Попова Елена Михайловна

Город: Moscow
Степень: кандидат физико-математических наук
Место работы: ФГБОУ ВО «Московский государственный технический университет им. Н. Э. Баумана»
Должность: доцент
0 Публикаций в РИНЦ
0 Индекс Хирша
7 Индекс PAPAI
7 Публикаций в журнале

Статьи автора

Попова Е. М., Косова А. В. Методические особенности изложения темы «Решение задачи Коши методом включения начальных условий в мгновенно действующие источники» // Научно-методический электронный журнал «Концепт». – 2019. – № V3. – URL: http://e-koncept.ru/2019/196018.htm.
Публикация находится в обработке. Полный текст будет доступен в ближайшее время.
Попова Е. М., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа в прямоугольнике методом Фурье» // Научно-методический электронный журнал «Концепт». – 2018. – № V9. – С. 40–44. – URL: http://e-koncept.ru/2018/186085.htm.
Полный текст статьи Читать онлайн
В статье приводится методика изложения темы «Решение краевых задач для уравнения Лапласа в прямоугольнике методом Фурье» в курсе уравнений математической физики в МГТУ им. Н. Э. Баумана. Данный математический аппарат широко используется в физике, математической физике, электродинамике, квантовой механике, акустике, волновой оптике, теории колебаний, теории сигналов и цепей. Цель работы – помочь студентам приобрести навыки применения методов математической физики к решению различных физических задач. Одним из основных методов решения задач математической физики является метод Фурье (разделения переменных). Задача Штурма – Лиувилля – важный этап этого метода. Для того чтобы структурировать основные типы задач Штурма – Лиувилля, в статье приведена таблица, в которой максимально лаконично представлен материал. В работе также кратко приведены основные теоретические сведения и в качестве примера решена краевая задача для уравнения Лапласа в прямоугольнике. Статья будет полезна студентам приборостроительных специальностей, а также преподавателям соответствующих курсов.
Попова Е. М., Чигирёва О. Ю. Методические особенности изложения темы «Обобщенные функции. Обобщенные производные. Дельта-функция Дирака» // Научно-методический электронный журнал «Концепт». – 2018. – № V7. – С. 54–62. – URL: http://e-koncept.ru/2018/186062.htm.
Полный текст статьи Читать онлайн
В статье приводится методика изложения темы «Обобщенные функции. Обобщенные производные. Дельта-функция Дирака» в курсе уравнений математической физики в МГТУ им. Н. Э. Баумана. Дельта-функцию ввели физики, пытаясь формально определить плотность точечной массы (точечного заряда). Затем она использовалась в уравнениях математической физики, но без хорошего математического обоснования. Общая теория обобщенных функций была создана позднее в работах С. Л. Соболева и Л. Шварца. Данный математический аппарат широко используется в физике, математической физике, электродинамике, квантовой механике, акустике, волновой оптике, теории колебаний, теории сигналов и цепей, поэтому он необходим студентам приборостроительных специальностей. Однако его строгое изложение вызывает немалые затруднения в студенческой аудитории. Цель данной работы – предложить методику строгого изложения теории обобщенных функций, доступную студентам второго курса. Продемонстрированы практические методы вычисления обобщенных производных. Статья написана на основе большого опыта преподавания уравнений математической физики и будет полезна студентам приборостроительных специальностей, а также преподавателям соответствующих курсов.
Ахметова Ф. Х., Ласковая Т. А., Попова Е. М. Методика изложения темы «Функции случайных величин» // Научно-методический электронный журнал «Концепт». – 2017. – № 4 (апрель). – С. 118–127. – URL: http://e-koncept.ru/2017/170090.htm.
Полный текст статьи Читать онлайн Статья в РИНЦ
В работе предлагается методика изложения темы «Функции случайных величин» в курсе «Теория вероятностей». Статья написана на основе многолетнего опыта преподавания этого предмета и будет полезна как студентам, так и преподавателям при проведении практических занятий. В ней отсутствуют доказательства используемых теорем, однако приведен список литературы, к которому можно обратиться за более подробными разъяснениями. Рассмотрено большое количество примеров, которые позволят студентам усвоить изучаемый материал в необходимом объеме. Цель работы – помочь студентам приобрести навыки применения вероятностных методов к решению различных задач.
Косова А. В., Пелевина И. Н., Попова Е. М. Методическое введение в курс «Элементы логики» // Научно-методический электронный журнал «Концепт». – 2017. – № 2 (февраль). – С. 147–153. – URL: http://e-koncept.ru/2017/170046.htm.
Полный текст статьи Читать онлайн Статья в РИНЦ
В статье предлагается методика изложения основного раздела математической логики – логики высказываний. Рассмотрено большое количество примеров, с помощью которых детально разъяснен смысл базовых определений. В работе также предлагается таблица, в которую сведены операции, логические связки, их смысл и соответствующие примеры. Статья может быть полезна преподавателям для проведения занятий и студентам первого курса.